DiSEqC
Digital Satellite Equipment Control (DiSEqC) est l’acronyme désignant un standard utilisé dans les équipements satellites numériques.
Il autorise la commutation et la commande distante des accessoires d’un récepteur satellite. Marque déposée (Trademark),
ce standard a été initialement développé par l’opérateur Eutelsat.
Il autorise la commutation et la commande distante des accessoires d’un récepteur satellite. Marque déposée (Trademark),
ce standard a été initialement développé par l’opérateur Eutelsat.
Généralités
Le protocole DiSEqC sert au contrôle d’équipement satellite numérique (« Digital Satellite Equipment Control ») pour la réception de la télévision via satellite. Il permet par exemple :
à un récepteur satellite (démodulateur) de contrôler un moteur qui oriente une parabole.
à commuter plusieurs paraboles branchées à un récepteur via un seul câble de descente.
de recevoir plusieurs satellites avec une seule parabole équipée de plusieurs têtes universelles (LNB en anglais) connectées au récepteur par un seul câble de descente, dans ce cas le protocole DiSEqC permettra de sélectionner depuis le récepteur la tête à utiliser et donc le satellite à recevoir.
À l’origine de la réception satellitaire de télévision directe, la parabole était reliée au récepteur par un câble coaxial. L’information circulait dans un seul sens de la tête située au foyer de la parabole vers le récepteur satellite. Le succès aidant, il a fallu multiplier le nombre des satellites mais cela obligeait à recourir soit à des paraboles multiples soit à une parabole motorisée. Pour piloter le moteur il fallait ajouter des câbles (3 à 6) au coaxial d’origine. Il était donc difficile de faire évoluer une installation de réception de satellite simple car tirer des nouveaux câbles n’est pas une opération facile. Le protocole DiSEqC permet au démodulateur satellite de communiquer avec des périphériques situés autour de la parabole via le seul câble coaxial de descente. Comme on le verra plus loin ces périphériques peuvent être un moteur, une tête multiple, un commutateur ou même une combinaison multiple de tout ça. Le protocole DiSEqC permet donc de faire évoluer facilement une installation de réception satellite en ajoutant des composants sans avoir besoin de tirer de nouveaux câbles.
Avec les satellites multiples logés sur une même position orbitale (Hot Bird à 13° Est, Astra à 19,2° Est…), on peut recevoir beaucoup plus de canaux (télévision, radio, données) depuis une même position orbitale. On peut donc plus facilement se passer de moteur, mais il a fallu augmenter la bande de fréquence utilisée car la parabole voit les satellites d’une même position orbitale comme s’ils n’en étaient qu’un. À la bande basse (10,7 – 11,7 GHz) a été ajoutée la bande haute (11,7 -12,75 GHz). Quelle que soit la bande, le convertisseur-LNB convertit le signal reçu en un signal de fréquence plus faible (950 MHz à 2,5 GHz) afin de pouvoir être envoyé sans trop de perte au démodulateur via le câble coaxial de descente. Le convertisseur LNB est donc une antenne (capteur) et un convertisseur de fréquence. Cette plage de fréquences étant la même pour les 2 bandes, le démodulateur( terminal) ne peut pas faire la différence. Il faut donc que ce dernier puisse indiquer au convertisseur dans quelle bande il doit travailler. Cela s’effectue en envoyant un signal de 22 kHz pour une utilisation de la bande haute. Une absence de ce signal fait travailler le convertisseur en bande basse. Avec cette astuce apparaît le transfert d’information sur le câble coaxial de descente du démodulateur vers la tête. On économise ainsi un câble dédié à l’envoi de cette information. Par la suite le protocole DiSEqC a utilisé ce même signal de 22 kHz pour envoyer ses trames d’information.
Le signal est émis du satellite par un transpondeur. Chaque transpondeur émet sur une fréquence avec une polarisation donnée, horizontale ou verticale. Là aussi la tête LNB doit savoir quelle polarisation elle doit utiliser. Pour cela le démodulateur envoie une tension continue dite 13/18V toujours par le câble coaxial de descente. Elle est envoyée du démodulateur vers le convertisseur-LNB. 13V signifie que l’on veut recevoir une polarisation verticale et 18V horizontale.
Notez que la tête est un composant actif sans pile ni batterie, il est donc alimenté électriquement par cette tension 13/18V envoyée par le démodulateur. Il en va de même des principaux équipements DiSEqC que vous branchez. Cela peut être délicat avec les moteurs DiSEqC car ils consomment plus de courant que les autres modules DiSEqC et il arrive que le démodulateur n’envoie pas une intensité suffisante pour alimenter le moteur.
La composante continue 22 kHz et la tension 13/18V ne font pas partie de DiSEqC même s’il utilise le 22 kHz comme porteuse pour moduler ses trames de commandes.
Il est possible de chaîner des démodulateurs satellites pour recevoir des programmes différents simultanément depuis une seule parabole. Le chaînage ou le bouclage s’effectue par la prise dite boucle(F) ou Loop-Through(A). Bien sûr un seul démodulateur doit envoyer le 13/18V et le 22 kHz. Cela implique une sérieuse limite, avec une telle installation on peut voir des chaînes différentes que si elles sont émises dans la même bande (haute ou basse) et avec la même polarisation.
à un récepteur satellite (démodulateur) de contrôler un moteur qui oriente une parabole.
à commuter plusieurs paraboles branchées à un récepteur via un seul câble de descente.
de recevoir plusieurs satellites avec une seule parabole équipée de plusieurs têtes universelles (LNB en anglais) connectées au récepteur par un seul câble de descente, dans ce cas le protocole DiSEqC permettra de sélectionner depuis le récepteur la tête à utiliser et donc le satellite à recevoir.
À l’origine de la réception satellitaire de télévision directe, la parabole était reliée au récepteur par un câble coaxial. L’information circulait dans un seul sens de la tête située au foyer de la parabole vers le récepteur satellite. Le succès aidant, il a fallu multiplier le nombre des satellites mais cela obligeait à recourir soit à des paraboles multiples soit à une parabole motorisée. Pour piloter le moteur il fallait ajouter des câbles (3 à 6) au coaxial d’origine. Il était donc difficile de faire évoluer une installation de réception de satellite simple car tirer des nouveaux câbles n’est pas une opération facile. Le protocole DiSEqC permet au démodulateur satellite de communiquer avec des périphériques situés autour de la parabole via le seul câble coaxial de descente. Comme on le verra plus loin ces périphériques peuvent être un moteur, une tête multiple, un commutateur ou même une combinaison multiple de tout ça. Le protocole DiSEqC permet donc de faire évoluer facilement une installation de réception satellite en ajoutant des composants sans avoir besoin de tirer de nouveaux câbles.
Avec les satellites multiples logés sur une même position orbitale (Hot Bird à 13° Est, Astra à 19,2° Est…), on peut recevoir beaucoup plus de canaux (télévision, radio, données) depuis une même position orbitale. On peut donc plus facilement se passer de moteur, mais il a fallu augmenter la bande de fréquence utilisée car la parabole voit les satellites d’une même position orbitale comme s’ils n’en étaient qu’un. À la bande basse (10,7 – 11,7 GHz) a été ajoutée la bande haute (11,7 -12,75 GHz). Quelle que soit la bande, le convertisseur-LNB convertit le signal reçu en un signal de fréquence plus faible (950 MHz à 2,5 GHz) afin de pouvoir être envoyé sans trop de perte au démodulateur via le câble coaxial de descente. Le convertisseur LNB est donc une antenne (capteur) et un convertisseur de fréquence. Cette plage de fréquences étant la même pour les 2 bandes, le démodulateur( terminal) ne peut pas faire la différence. Il faut donc que ce dernier puisse indiquer au convertisseur dans quelle bande il doit travailler. Cela s’effectue en envoyant un signal de 22 kHz pour une utilisation de la bande haute. Une absence de ce signal fait travailler le convertisseur en bande basse. Avec cette astuce apparaît le transfert d’information sur le câble coaxial de descente du démodulateur vers la tête. On économise ainsi un câble dédié à l’envoi de cette information. Par la suite le protocole DiSEqC a utilisé ce même signal de 22 kHz pour envoyer ses trames d’information.
Le signal est émis du satellite par un transpondeur. Chaque transpondeur émet sur une fréquence avec une polarisation donnée, horizontale ou verticale. Là aussi la tête LNB doit savoir quelle polarisation elle doit utiliser. Pour cela le démodulateur envoie une tension continue dite 13/18V toujours par le câble coaxial de descente. Elle est envoyée du démodulateur vers le convertisseur-LNB. 13V signifie que l’on veut recevoir une polarisation verticale et 18V horizontale.
Notez que la tête est un composant actif sans pile ni batterie, il est donc alimenté électriquement par cette tension 13/18V envoyée par le démodulateur. Il en va de même des principaux équipements DiSEqC que vous branchez. Cela peut être délicat avec les moteurs DiSEqC car ils consomment plus de courant que les autres modules DiSEqC et il arrive que le démodulateur n’envoie pas une intensité suffisante pour alimenter le moteur.
La composante continue 22 kHz et la tension 13/18V ne font pas partie de DiSEqC même s’il utilise le 22 kHz comme porteuse pour moduler ses trames de commandes.
Il est possible de chaîner des démodulateurs satellites pour recevoir des programmes différents simultanément depuis une seule parabole. Le chaînage ou le bouclage s’effectue par la prise dite boucle(F) ou Loop-Through(A). Bien sûr un seul démodulateur doit envoyer le 13/18V et le 22 kHz. Cela implique une sérieuse limite, avec une telle installation on peut voir des chaînes différentes que si elles sont émises dans la même bande (haute ou basse) et avec la même polarisation.